
Building Complex Software
Applications Inside of a Container

High performance computing (HPC) scientific applications require complex dependencies, many of
which are not supplied by the Linux operating system. Typically, HPC centers offer these
dependencies through environment module-files that when loaded, modify the user environment
to provide access to software installations. If a package doesn’t exist on a system, customers must
request them through system administrators or find alternatives. It is unrealistic for HPC centers to
provide every unique dependency requested, thus the interest for user defined software stacks
and containers are increasing. By building Model for Prediction Across Scale (MPAS) and its
dependencies inside a Debian GNU/Linux 9 container image, we demonstrate that a common
atmospheric simulation runs nearly identically on a Red Hat Enterprise Linux 7 Commodity
Technology System (CTS1) cluster with the Intel® Core Broadwell™ architecture and a Cray System
with the SuSE Enterprise Linux 12 + Cray Linux Environment (CLEv6.0) and an Intel® Core Haswell™
architecture, with no modifications to the container. This shows that it is possible to build complex
software applications inside an unprivileged container and run it successfully across various super
computers with different hardware components, Linux operating systems, and environments.
Furthermore, the application computational results from their execution are essentially identical
with 28bytes differing between 2.1GB output file. Containers offer customers versatility with
nominal dependencies on the system they run on. This advancement potentially allows for
tremendous portability across Linux HPC systems; by encapsulating complex dependencies it gives
scientists the ability to run large scale simulations on HPC resources with their own preferred
software.

#Model for Prediction Across Scales (MPAS) "containerized" using docker.
#Author: Calvin Seamons
#Dockerfile being built using openmpi build from charliecloud team.
FROM openmpi

#apt update and installation of tools, compilers, and libraries needed.
RUN apt -y update
RUN apt -y install build-essential
RUN apt -y install wget curl git

#Creating directory for tarballs.
RUN mkdir -p /home/tars

#Entering tar directory for downloading.
WORKDIR /home/tars/

#Downloading tarballs from website.
RUN wget https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8/hdf5-1.8.16/src/hdf5-1.8.16.tar.gz \

https://parallel-netcdf.github.io/Release/pnetcdf-1.11.2.tar.gz \
https://www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-c-4.7.0.tar.gz \
https://github.com/NCAR/ParallelIO/releases/download/pio2_4_3/pio-2.4.3.tar.gz \
https://www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-fortran-4.4.5.tar.gz \
https://github.com/MPAS-Dev/MPAS-Model/archive/v7.0.tar.gz \
http://www2.mmm.ucar.edu/projects/mpas/test_cases/v7.0/supercell.tar.gz \

#Untaring all tarballs into /usr/local/src.
WORKDIR /usr/local/src/
RUN cat /home/tars/*.tar.gz | tar -xzf - -i

#Installing requirements for Python3.7
RUN apt -y install zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev
RUN apt -y install python

#Installing Spack.
WORKDIR /usr/local/src
RUN git clone https://github.com/spack/spack.git
WORKDIR /usr/local/src/spack
RUN git checkout v0.12.1
#RUN "." source share/spack/setup-env.sh

RUN ./bin/spack install zlib@1.2.11
RUN ./bin/spack install gcc@8.2.0

#TODO edit spack to allow dir specification and not use hash.
ENV PATH=/usr/local/src/spack/opt/spack/linux-centos7-x86_64/ \

gcc-4.8.5/gcc-8.2.0-sxbf4jq6ghmoybsjlpqz2dm2qbbxzfyn/bin/:$PATH

#Installation of Parallel hdf5 (phdf5)
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/
WORKDIR /usr/local/src/hdf5-1.8.16
RUN CC=mpicc FC=mpif90 ./configure --with-zlib=/usr/local/zlib \

--disable-cxx \
--enable-parallel \
--enable-hl \
--enable-fortran \
--enable-fortran2003 \
--enable-direct-vfd \
--enable-production \
--enable-build-all \
--enable-shared \
--prefix=/usr/local

RUN make -j && make install -j

#Installation of PNetCDF
WORKDIR /usr/local/src/pnetcdf-1.11.2
RUN ./configure --enable-shared \

--prefix=/usr/local/ \
--with-mpi=/usr/local/

RUN make check -j && make install -j

#Installation of NetCDF
Run apt -y install libcurl4-gnutls-dev
WORKDIR /usr/local/src/netcdf-c-4.7.0
RUN LDFLAGS='-L/usr/local/lib -lpnetcdf' \

CPPFLAGS='-I/usr/local/include' ./configure --disable-dap \
--disable-hdf4 \
--enable-parallel-tests \
--enable-pnetcdf \
--enable-large-file-tests \
--prefix=/usr/local/

RUN make -j && make install -j

#Installation of NetCDF-Fortran TODO may not be needed...
WORKDIR /usr/local/src/netcdf-fortran-4.4.5
RUN ./configure --enable-shared --prefix=/usr/local
RUN make -j && make install -j

#PIO building
WORKDIR /usr/local/src/pio-2.4.3
RUN CC=/usr/local/bin/mpicc \

FC=/usr/local/bin/mpif90 \
CFLAGS=-std=c99 ./configure --enable-fortran --enable-shared

RUN make -j && make install -j

#MPAS Atmosphere Core Generated, all built core stored into mpas-cores
RUN mkdir /usr/local/src/mpas-cores

#Generation of init_atmosphere core
WORKDIR /usr/local/src/MPAS-Model-7.0
RUN PIO=/usr/local \

NETCDF=/usr/local \
PNETCDF=/usr/loca l \
make gfortran CORE=init_atmosphere \

USE_PIO2=true \
DEBUG=true \
PRECISION=single

#store and remove init_atmosphere core generation
RUN cp init_atmosphere_model ../mpas-cores
RUN make clean CORE=init_atmosphere

#Generation of atmosphere core.
RUN PIO=/usr/local \

NETCDF=/usr/local \
PNETCDF=/usr/local \
make gfortran CORE=atmosphere \

USE_PIO2=true \
DEBUG=true \
PRECISION=single

#Store and remove atmosphere core generation
RUN cp atmosphere_model ../mpas-cores
RUN make clean CORE=atmosphere

Calvin Seamons
Los Alamos National Laboratory

calvindseamons@lanl.gov

Results of containerized MPAS

ARES Dependency Trees

Dockerfile.MPAS

Running MPAS in a Container

Future WorkAcknowledgements

Abstract

Mentors: Jordan Ogas, Jennifer Green
Special Thanks: Dan Magee, Rob Aulwes, Kody
Everson, and Trent Steen

Trinitite [42:41] Fog [45:51]

Both Fog and Trinitite produce the same result with zero modification to the container.
• Trinitite runs roughly 7% faster
• Linux Diff command show 28bytes differ on the output of 2.1GB output file

$ ch-grow –t mpas-debian9 –f Dockerfile.mpas .

$ ch-builder2tar mpas-debian9 /tmp

$ scp /tmp/mpas-debian9.tar.gz $user@fg-fey

1. Write a “dockerfile” that builds MPAS and it’s dependencies
2. Create an Image
3. Flatten the Image into a tarball
4. Send the tarball to a production machine to execute

5. Allocate nodes on a production cluster
6. Module load in desired packages (Charliecloud)
7. Unpack tarball across allocated nodes
8. Execute Charliecloud runtime environment

$ salloc –N1 --qos=standard --time=3:00:00

$ module load charliecloud

$ ch-tar2dir mpas-debian9.tar.gz /var/tmp

$ ch-run -w --unset-env='*' --cd=/usr/local/\
src/supercell/ --set-env=/var/tmp/mpas-debian9/\
ch/environment/var/tmp/mpas-debian9/ -- mpirun\
-np 32 ./atmosphere_model

Charliecloud development team is currently working on ch-
grow being adapted for the front end. This would eliminate the
transport of tarballs as images could be build and executed all
on the production cluster.

• Get MPAS container to work on multi-nodes

• Build other software applications inside
containers

• Performance analysis

• GPU analysis and testing

https://computing.llnl.gov/projects/spack-hpc-package-manager

ARES is radiation thermodynamic software used
by Lawrence Livermore that needs over 40
dependencies

Presented to Los Alamos National Laboratory HPC Mini-Showcase 2019

LA-UR-19-27092

